SYI
(_ ()
Q2 N N2

CLO API/ SDK Guide

SDK Version
Applicable CLO S/W Version: CLO 5.0.156 Official Patch, 18" Mar 2019
- Windows: API/SDK v1.2
- Mac OS: Mac API/SDK v0.6 for CLO 5.0.156 Official Patch

Document Version
Version 3 (2019/03/20)

((ff"\\ I 2]

AN S

Table of Contents

LI 101 7o Yo U ot oY o WU UPR 3
2. INSTAIlATION .ot 3
3. CLO SDK PaCKage. . .ueeeiiiieiiiee ettt 4
A, QUICK STAIMT ettt ettt 7
5. Make your OWN PlUG-iN...coooiiiiiii e 10
6. PlUG-IN IMANAGETiiiiiieiiiiiee ettt e e e et e e e ae e e 11
7. Library Window Implementationccoiiiiiiiiiniiiieecciccceeeeeece 13
8. Plug-in Menu POSITIONvviiiiieiiiiieeceiiiee e e 18
Q. PlUG-in DebUQG LOGS ..iiiieiiiiiieeeiiiiiee ettt e e 19
10. RO MAP ... e e e e 20

1. Introduction

This document describes how to download, install and use CLO API/SDK
and how developers can implement their own plug-ins running on CLO. It
also includes the simple structure for API/SDK package and addresses for the

A\

S
((_
NN

sample projects in the package.

As CLO S/W has been developed for cross-platforms: Windows and Mac OS,
we have two separate packages: one for Windows and the other for Mac OS.

They have commonalities but some parts are different. Will describe the

\!

\
/

\

/

(1
\

J

common parts and different parts respectively.

2. Installation

1) System Environment

a. Windows

- OS: Windows 8, Windows 10

- IDE: Visual Studio 2015 (or above)

b. Mac OS

- OS: mac OSX 10.12 (or above)

- |IDE: Xcode 9.2 (or above)

2) Download SDK

Please download the SDK zip file from the manual.

Compatibility with Previous Versions

You must use each version’s corresponding API/SDK to create CLO

Plug-in.
CLO Ver. Windows API Mac API Manual
5.0 Official V1.1 (download) V0.5 (download) manual
Release ' . -
5.0.156 Official V1.2 (w) V0.6 (download) manual

Patch (Current)

https://support.clo3d.com/hc/en-us/articles/360017616633?flash_digest=36d1dd5e923f53f4e80c61fdf48d2a92f0ddf31d
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_Windows_v1_1_for_5_0_100_Official.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_MacOS_v0_5_for_5_0_100_Official.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO%20API_SDK_GUIDE_VER1_20190214.pdf
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_Windows_v1_2_for_5_0_156_Official_Patch.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_MacOS_v0_6_for_5_0_156_Official_Patch.zip
http://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO%20API_SDK_GUIDE_VER2_20190318.pdf

] 2
(L W)
NN

3. CLO SDK Package

CLO SDK package includes APl header/lib files and sample projects.

1) Folder structure

[. J

(‘4\\ 1 (f§)
AR
CloApi }
— Header
i T
— Lib
L -
e Samples
— ExportPlugin ‘
“— LibraryWindowlmplementation

a. CloApi folder

i. Header

i) ExportAPLh, ImportAPI.h

iii)

Vi)

Lib

SYI
(_ u ()
AN

You can include this header file to import/export files such as ZPrj,
ZPac, OBJ, Rendering images, and so on. You can find the
example in “ExportPlugin” sample.

RESTAPLh

This includes high-level wrapping functions of REST APIs. If these
are not enough for your own use, you may use your own REST API
functions.

LibraryWindowlnterface.h

This file includes an interface class so that the plug-in developers
can override to implement the Library Window construction. You
can find the sample code for the usage via APl -> Samples ->
LibraryApilmplementation

APIMessages.h (Windows Only)

Simple protocol messages to communicate between JavaScript
on WebAPI browser and CLO S/W. You can find the example JS
code inside the header file.

UtilityAPI.h

This file includes some utility functions like “Get temporary folder
path of CLO" and “Show a message box on CLO".

WebAPI.h (Windows Only)
You can include this header file to use the APl functions to access

Webkit feature and/or set callback function into CLO S/W via API.
You can find the example of the usage in “"ExportPlugin” sample.

This folder has only one file: CloScene.lib for Windows or
libCloScene_.dylib for Mac OS. You should import this library file into
your plug-in project to run in CLO API functions inside CLO S/W.

Samples

ExportPlugin

A sample project to show how to use Export APls and create a
plug-in. For example, you can see how to save files such as
thumbnail and Tech Pack and send them to your server using

6

SYI
(_ u ()
AN

REST APIs with this project file.

LibraryWindowlmplementation

A sample project to show how to implement the custom Library
Window to build up the Finder API tab. You can find the usage
from 7. Library Window Implementation

b. ExternLib

i. ~Qt(Windows Only)

This folder contains Qt library — some header files and lib/dll files for
LibraryWindowlmplementation sample project. You can compile and run
the sample project as-is without any modification.

4. Quick Start

1) Download and install “CLO 5.0" into your PC via the CLO Official Site
(https://www.clo3d.com).

2) Open the sample project — ExportPlugin project

a. Windows

Build “ExportPlugin.dll” file

Open the solution file (ExportPlugin.sln) via Visual Studio 2015 (or
above).

Run “Build Solution” in Visual Studio (press Ctrl+Shit+B for
shortcut). Make sure that “Solution Configurations” is “Release”
and “Solution Platforms” is “x64" when building the solution.
The DLL file will be created in
“Samples\ExportPlugin\xé64\Release” folder.

Put “ExportPlugin.dll” into the default plug-in folder.

Copy the plug-in dll file and paste/overwrite into the assets folder;
located in C:\Users\Public\Documents\CLO\Assets_ver_(version
number)\Preferences\API_Plug_in\

You can use the ‘cloapi_plugins’ folder as you used in the beta
version of API/SDK packages. Create ‘cloapi_plugins’ into the CLO
Executable folder you installed in i) and use it as the default plug-
in folder.

https://www.clo3d.com/

A\
4

R\
A\ I/

(1
(1
\

b. Mac OS
i. Build “libExportBOM.dylib” file

- Open the xcode project file (ExportPlugin.xcodeproj) via Xcode.

@ CLO_SDK_G...12_11.docx ExportPlugin > g; ExportBOM.xcodeproj
Header > LibraryApilmplementation » ExportPlugin.sin
Lib > Source >
Samples >

PROJECT,

ExportBOM.xcodepro

- Run "Archive” via Product menu in XCode.
@ Xcode File Edit View Find Navigate Editor Debug Source Contro

[NON) | 2 i ExportBOM) Il My Mac J
B = Q & © B

v ExportBOM

o 3 der) h

Analyze {+3B

¥ | | Header el
Build For
¥ [Source Perform Action
o ExportPlugin.cpp)
¥ | | Products Build
T lIbExportBOM.dylib Clean

Stop

Scheme
Destination

Create Bot...

- You'd be able to find the output dylib via Window -> Organizer.

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control m Help

o ® | 3 i ExportBOM) Bl My Mac Minimize ®
Zoom
B Qa6 =p B8 B < & ExportBOM Header) I |
¥ & ExportBOM Show Previous Tab %
v Header
B ExportPlugin.n D and API 8

Welcome to Xcode ik
o ExportPlugin.cpp De'w
¥ [Products Organizer

It libExportBOM.dylib Show Touch Bar

¥ [Source

Bring All to Front

v & ExportBOM — h ExportPlugin.h

A\
4

)
W,

(1
(1
\

i Put “libExportBOM.dylib" into the default plug-in folder.

- Copy the plug-in dll file and paste/overwrite into the assets folder;
located in Users\(user name)\Documents\CLO\Assets_ver_(version
number)\Preferences\API_Plug_in\

3) Run CLO and browse the new feature from plug-in menu.

Help
anguage 4

User Settings i3 41 rors

Plug-in » Export Garment Information

Log Cut

SYI
(_ u ()
AN

5. Make your Own Plug-in

To make your own plug-in, you need to customize the following functions.
You can find these functions inside ‘ExportPlugin’ project.

1) DoFunction

This function is called when a user clicks the action menu in the CLO S/W
plug-in menu. In this function you can implement codes like sending
exported files to your server.

2) GetActionName
You can change the action menu title which appears under the plug-in menu.
3) CallbackFromWebKit(int argc, char** argv)

You can write the code for the call back function which will be called after
‘Browser Window’ is triggered by Java Script code when using Web API. You
will be able to get the number of messages from ‘argc’ as integer and each
message from ‘argv’ as char* array via Web API sent from Java Script code
on your Webpage.

4) GetObjectNameTreeToAddAction

This function is called when the user adds a plug-in dll(or dylib) file into the
CLO S/W. You can manage the position where you want to put the plug-in

menu above or below which menu/action in the application. See “8. Plug-in
menu position” for details.

5) GetPositionIndexToAddAction
This function is also used when the user imports a plug-in dll(or dylib); you
can choose whether the plug-in action would be put into below the

designated menu/action which you wrote in 4) or above the target.

Then, build DLL(or dylib) and paste it to the installation folder as guided in “4.
Quick Start”.

10

] 2
(L W)
NN

6. Plug-In Manager

1) You can set the position to add a plug-in action into the desirable menu in
the User Settings via User Settings -> Plug-in Tab.

User Settings

| Plug-in

Feabre

Export Custom

2) If you click the B add’ icon, ‘File Open’ dialog will be shown to input the
plug-in dll path for Windows, the dylib path for Mac OS and then ‘Register
Plug-in’ dialog will appear; you can edit the feature title and menu position

to insert the plug-in feature.
B rlug-in Manager ? *

Name Export Custom|

Sosition Plug-In

Export Custam

11

] 2
(L W)
NN

3) New item will be added into the Preference Plug-In tab like below. You can
edit / delete the items.

| Plug-in

Feahre

12

SYI
(_ u ()
AN

7. Library Window Implementation

Library Window Interface are different from other APl applications. When the
user clicks ‘APl tab’ in the Finder in CLO, the application starts to call the
virtual functions in the Library Window APl interface class. If you
implemented a class inherited from the Library Window APl interface class,
build it, and put the dll into CLO’s executable folder as designated way; the
module will run the implemented function inside the plug-in dll.

1) Windows

a. Open the sample project

Browse ‘AP|" -> ‘Samples’ -> ‘LibraryWindowlmplementation” and open the
solution file: “LibraryWindowlmplementation.sIn”.

b. Write Code

You can write code as you want in LibrarylmplePlugin class functions in .cpp
file but do not add or modify anything inside .h file.

c. Build the project

Build solution/project then the output dll file will be created in ExternLib ->

CLOLibrarylmpl->bin folder named CloLibraryAPI_Plugin.dll. Copy the
output dll file into the CLO executable folder. ‘APl tab’ in Finder will act as
you described in your code following the Library Window
Interface/Implementation specification.

Please see the LibraryWindowInterfacel.h and LibraryWindowimplmentation
Plugin project code for details.

2) Mac OS

e This will break apple codesigns.
e Assuming that the ID of the user logged in to mac is clo

a. How to install Qt SDK

ii. Download Qt mac sdk.

mac Qt Library url : https://s3.amazonaws.com/clo.share/Ot.zip

iii. Extract the downloaded Qt.zip file to ”/” (root)

iv. Register QTDIR in .bash_profile.

13

https://s3.amazonaws.com/clo.share/Qt.zip

TS
L (L)
NN

2
K

open ~/.bash_profile
export QTDIR=/Users/clo/Qt/4.8.7

export PATH=$QTDIR/bin:$PATH
source ~/.bash_profile

b. How to implement Library Window Implementation

i. Extract the CLO_SDK.zip file.

CloApi >
[CloLibraryAPI_Plugin.pro
@ CloLibraryAPI_Plugin.xcodeproj

mac_release

scripts

ii. In the terminal, enter the following command to create
CloLibraryAPI_Plugin.xcodeproj.

python scripts/build_library_interface.py xdebug

ii. Open the generated xcodeproj file in Xcode.

73 libCloLibr...yAPI_Plugin) Bl My Mac CloLibraryAP|_Plugin: Ready | Today at 5:11 PM 1 = @ <08 0

B.)mmmm s piPlugin.cpp) [LibraryAPlImpIPlugi <o 0O @

Identity and Type

namespace CLOAPI
Name LibraryAPlImpIPlugin.cop

YAPIImp1Plugin: sLibraryaPl InplPlugin() Type Default - C++ Source [
¥ [Samples {
w B Libraryipiimplamentation , Location Relative to Project B
CloapifSamples/
o/ UibraryAPlimplPlugin.cpp M LibraryApilmplementation/
¥ i Headers ibraryAPIImplPlugin: :~LibraryAPIING1PLugin() bl e
» & Cloapi { Full Path [Volumes/SSD512/
workspace-naw/CLO_5 0/
v "
i Sources [amake , CloApifSampies|
B CloLibraryAPLPlugin.pro UibraryAgilmplementation/

¥ 3 External Frameworks and Libraries LRxanARIOFIYin. 00 ©

» [OrCore framework On Demand Resource Tags

Gstring GetParentFolderPath(const QStringk path) Target Membership

Text Settings

(path == "* || path == NULL) return "*;

» Product:
string folderPath = path; Te: oding No Explicit Encoding B
if (folderPath.endsWith('/')) No Ex| Endings m
folderPath = folderPath.left(folderPath.length() - 1);
indent Using Tabs <]
filename = folderPath,section('/', -1};
parentPath = folderPath.left(folderPath.size() - (filename.size() + 11}; hoea
parentPath;
¥ = Cocoa Touch Class - A Cocon
H Touch class
String GetOnlyFileName(const QStringh path)
€
if (path == "* || path == NULL) return "*; Ul Test Case Class - A class
QString filename = path.section('/', -1); E implementing a unit test
return filename;
3
Unit Test Case Class - Aclass
string GetFileExtension(const QStringé path) | reiemeniing a un tes
{

if (path.size() == B}
return Gstring(**);

iv. Edit the LibraryWindowlmplPlugin.cpp file.
Always modify the next return value in the function to true.
The API tab is activated in the library window only if the return value
of this function is true.

bool LibraryWindowlmplPlugin::EnableCustomUI()
{

14

\
4

(A

A\
A\IR/4
(i
(r
\

(i

return true;

V. The currently implemented code is a sample code.
Vi. Implement functions declared in LibraryWindowlnterface.h to suit
your requirements.

vil. Release build.

python scripts/build_library_interface.py release

vii. The built dylib file will be created in the following location:

lib

mac_release/CloLibraryAPI_Plugin/libCloLibraryAPI_Plugin.1.0.0.dy

TS fibCloLibraryAPI_Plugin.1.0.0.dylib

Makefile

» libCloLibraryAP|_Plugin.1.0.dylib

» libCloLibraryAP|_Plugin.1.dylib

» libCloLibraryAPI_Plugin.dylib

8 moc >
¥ object >

aze » [Documents » i CLO_SDK v0.8_for_5_0_OBT » [l mac_release » | CloLibraryAPI_Plugin » [build

iX. Overwrite the generated libCloLibraryAPI_Plugin.1.0.0.dylib file into
the CLO package installed in /Applications:

/Applications/CLO_Network_OnlineAuth_Beta.app/Contents/Fram
eworks/libCloLibraryAPI_Plugin.1.0.0.dylib

>
>
>

»

Breakpad.framework >
files.sign

libavcodec.56.26.100.dylib

libavformat.56.25.101.dylib

libavutil.54.20.100.dylib

libcgauth.dylib

[@ libCloLibraryAPI_Plugin.1.0.0.dylib

»

libCloMathSimulate.dylib
libCloScene.1.0.0.dylib
libcrypto.1.0.0.dylib
libcryptopp.dylib

libcurl.4.dylib

libfbxsdk.dylib

libfreeimage.3.16.0.dylib libCloLibraryAPI_Plugin.
libfreetype.6.dylib 1.0.0.dylib
libftgl.2.1.3.dylib 108 KE
libgec_s.1.dylib { ‘é;ter&ay
libGLEW.2.1.0.dylib d Yesterday
libgomp.1.dylib ast of d Yesterday
libnvrtc-builtins.dylib Add Tags...
libnvrtc.dylib

libomp.dylib

libopencv_core.2.4.11.dylib
libopencv hiahaui.2.4.11.dvlib

& Macintosh HD > Applications > [@ CLO_Network_OnlineAuth_Beta.app > Contents > Frameworks > libCloLibraryAPI_Plugin.1.0.0.dylib

15

] 2
(L W)
NN

X. Now run CLO_Network_OnlineAuth.app.
Closet and API tabs will be created and shown on the left side of
Favorites in the Library window.

Local Closet
Favorites
Garment
Avatar
Hair
Shoes
Pose
Motion
Hanger

Fabric

[P By ol Talonn

R

New_Fe...avt Male_B...avt

A A

Male_A...avt Kid_A_...avt Female_...avt Female_...avt

Xi. Click the API tab to navigate to the code you've implemented.

17

SYI
(_ u ()
AN

. Plug-in Menu Position

“cloapi_plugins” folder

When CLO S/W starts to run, the plug-in module loads the dll(or dylib) files
in the ‘cloapi_plugins’ folder automatically.

In case GetObjectNameTreeToAddAction() function is implemented and the
default position for the plug-in menu is described inside the function
properly, an action will be added to above or below the menu/action
position for the plug-in action.

. If GetObjectNameTreeToAddAction() is not implemented or contains

improper description, an action will be added to the child of Settings / plug-
in menu.

Edit

The user can modify the target position for the plug-in menu when or after
adding the plug-in via the Plug-in manager. See “6. Plug-in manager”.

Add plug-in via Plug-in manager

If the plug-in dll(or dylib) has the proper GetObjectNameTreeToAddAction()
function, the position will appear in the Register Plug-in dialog so that the
user can edit and/or confirm.

. Edit the plug-in action position

The user can change the action position via the plug-in manager for the
plug-ins which were loaded automatically from ‘cloapi_plugins’ folder or
were added from plug-in manager by user

Caution

Please keep in mind that the user edits the plug-in position via step 2), it
would discard the default position described in the plug-in dll(or dylib) file. It
means that the priority of the user modification is higher than the plug-in
developers’; and the key value for the decision is the plug-in dll(or dylib) file
path — absolute file path.

As this can make users confused as illustrated below, please be careful.

i A developer wrote the default position inside ‘plug_in.dll’

. A user saves the ‘plug_in.dll" into the ‘cloapi_plugins’ folder or a
desirable folder, adds the plug-in and modifies the position

iii. The developer changes the default position inside ‘plug_in.dll" and
distributes it to the user again.

18

iv. If the user puts the latest ‘plug_in.dll" into the same directory he or
she used in i) and overwrites it, the plug-in menu will be located in
the position the user set in ii).

. Plug-in Debug Logs

Plug-in log will be made in (CLO_ASSET_FOLDER)/api_plugin_log.txt when
trying to run the plug-in action from the file menu.

CLO_ASSET_FOLDER

Windows
C:\Users\Public\Documents\CLO_(model_name)\Assets_ver (CLO version number)\
Mac CLO_ASSER_FOLDER

~\Documents\CLO\Assets_ver_(CLO version number)\

Debug logs
MESSAGE_PLUGIN_ACTION_MENU_CLICKED: "User clicked to run a plug-in action."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_REGISTERED_DLL_PATH: "Module starts
to look up the registered plug-in file path for the plug-in action."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_FIND_REGISTERED_DLL_PATH: "Succeeded
to look up the registered plug-in file path for the plug-in action."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_FIND_REGISTERED_DLL_PATH: "Failed to look
up the registered plug-in file path for the plug-in action."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_LOADED_PLUG_IN_DLL_FILE: "Checking
if the plug-in file has been loaded or not."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_FIND_LOADED_PLUG_IN_DLL_FILE: "The
plug-in has been loaded in the plug-in manager."

MESSAGE_PLUGIN_ACTION_TRYING_TO_LOAD_PLUG_IN_DLL_FILE: "Trying to load the
plug-in file."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_LOAD_PLUG_IN_DLL_FILE: "The plug-in file is
loaded into the plug-in manager successfully."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_PLUG_IN_DLL_FILE: "Failed to load the
plug-in file."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_PLUG_IN_DLL_FILE_AND_ABORT:
"Failed to load the plug-in file. Aborted."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_DO_FUNCTION: "Trying to find
DoFunction inside the plug-in file."

19

10.

] 2
(L W)
NN

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_LOAD_DO_FUNCTION: "Succeeded."
MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_DO_FUNCTION: "Failed."

MESSAGE_PLUGIN_ACTION_TRYING_TO_EXECUTE_DO_FUNCTION: "Trying to run the
DoFunction inside the plug-in file."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_EXECUTE_DO_FUNCTION = "Succeeded."

MESSAGE_PLUGIN_ACTION_EXEPCTION_TO_EXECUTE_DO_FUNCTION = "Exception."

Road Map

N/A

20

