

CLO API/ SDK Guide

SDK Version
Applicable CLO S/W Version: CLO 5.2.142 Official Release and later, 3rd April 2020

API/SDK v2.7

Document Version
Version 8 (2020/4/3)

2

Table of Contents

1. Introduction ...오류! 책갈피가 정의되어 있지 않습니다.

2. Installation ... 3

3. CLO SDK Package .. 4

4. Quick Start ... 7

5. Make your Own Plug-in .. 9

6. Plug-In Manager .. 10

7. Library Window Implementation ... 12

8. Plug-in Menu Position .. 17

9. Plug-in Debug Logs ... 18

3

1. Introduction

This document describes how to download, install and use CLO API/SDK and
how developers can implement their own plug-ins running on CLO. It also
includes the simple structure for API/SDK package and addresses for the
sample projects in the package.

As CLO S/W has been developed for cross-platforms: Windows and Mac OS,
you can use the API/SDK package to make plug-in .dll and/or .dylib for both
platforms.

They have commonalities but some parts are different. Will describe the
common parts and different parts respectively.

2. Installation

1) System Environment

a. Windows

- OS: Windows 8, Windows 10
- IDE: Visual Studio 2017 (or above)

b. Mac OS

- OS: mac OSX 10.12 (or above)
- IDE: Xcode 9.2 (or above)

2) Download SDK

Please download the SDK zip file from the online manual.

https://support.clo3d.com/hc/en-us/articles/360017616633?flash_digest=36d1dd5e923f53f4e80c61fdf48d2a92f0ddf31d

4

3. CLO SDK Package

CLO SDK package includes API interface header/lib files and sample
projects.

1) Folder structure

- API/SDK Package

- ExternLib Package

5

2) API/SDK Package

a. CLOAPIInterface folder
i. <api_sdk_package>

i) CLOAPIInterface.h

This file includes all the header files for interface classes located in
the ‘include’ folder. You can include this file to use API calls inside
the interface classes. The usage is described in the Samples ->
ExportPlugin.

ii) LibraryWindowInterface.h

This file includes an interface class so that the plug-in developers
can override to implement the Library Window construction. You
can find the sample code for the usage via API -> Samples ->
LibraryApiImplementation

ii. include
i) CloApiData.h

This file includes some structures/classes for API calls.

ii) DefineDllForWin.h

This file contains a ‘define’ for export/import dll.

iii) ExportAPIInterface.h, ImportAPIInterface.h

You can include this header file to import/export files such as ZPrj,
ZPac, OBJ, Rendering images, and so on. You can find the
example in “ExportPlugin” sample.

iv) FabricAPIInterface.h

You can include this header file to import metadata to add fabric
and/or export zfab file.

v) RestAPIInterface.h

This includes high-level wrapping functions of REST APIs. If these
are not enough for your own use, you may use your own REST
API functions.

vi) UtilityAPIInteface.h

6

This file includes some utility functions like “Get temporary folder
path of CLO” and “Show a message box on CLO”.

iii. Lib

This folder has library files for function table in the CLOAPIInterface
project: CLOAPIInterface.lib for Windows or libCLOAPIInterface_.dylib for
Mac OS. You should import this library file into your plug-in project to run
in CLO API functions inside CLO S/W.

iv. Samples

i. ExportPlugin
A sample project to show how to use Export APIs and create a
plug-in. For example, you can see how to save files such as
thumbnail and Tech Pack and send them to your server using
REST APIs with this project file.

ii. LibraryWindowImplementation
A sample project to show how to implement the custom Library
Window to build up the Finder API tab. You can find the usage
from 7. Library Window Implementation

3) ExternLib Package

a. Qt (Windows Only)

This folder contains Qt library – some header files and lib/dll files for
LibraryWindowImplementation sample project. You can compile and run
the sample project as-is without any modification after downloading the
ExternLibPackage.zip file from the CLO web site and extract the file into
the api_sdk_package/ folder along with the CLOAPIInterface folder.

7

4. Quick Start

1) Download and install the “CLO 5.2.142 or later” into your PC via the CLO
Official Site (https://www.clo3d.com).

2) Open the sample project – ExportPlugin project

a. Windows

i. Build “ExportPlugin.dll” file

- Open the solution file (ExportPlugin.sln) via Visual Studio 2017 (or
above).

- Run “Build Solution” in Visual Studio (press Ctrl+Shit+B for
shortcut). Make sure that “Solution Configurations” is “Release” and
“Solution Platforms” is “x64” when building the solution.

- The DLL file will be created in “Samples\ExportPlugin\x64\Release”
folder.

ii. Put “ExportPlugin.dll” into the default plug-in folder.

- Copy the plug-in dll file and paste/overwrite into the assets folder;
located in “C:\Users\Public\Documents\CLO\Assets\Preference-
s\API_Plug_in\”

- You can use the ‘cloapi_plugins’ folder as you used in the beta
version of API/SDK packages. Create ‘cloapi_plugins’ into the CLO
Executable folder you installed in i) and use it as the default plug-in
folder.

b. Mac OS

i. Build “libExportBOM.dylib” file

- Open the xcode project file (ExportPlugin.xcodeproj) via Xcode.

https://www.clo3d.com/

8

- Run “Archive” via Product menu in XCode.

- You’d be able to find the output dylib via Window -> Organizer.

ii. Put “libExportBOM.dylib” into the default plug-in folder.

- Copy the plug-in dll file and paste/overwrite into the assets folder;
located in “~Documents\clo\Assets\Preferences\API_Plug_in\”

3) Run CLO and browse the new feature from plug-in menu.

9

5. Make your Own Plug-in

To make your own plug-in, you need to customize the following functions.
You can find these functions inside ‘ExportPlugin’ project.

1) DoFunction

This function is called when a user clicks the action menu in the CLO S/W
plug-in menu. In this function you can implement codes like sending exported
files to your server.

2) GetActionName

You can change the action menu title which appears under the plug-in menu.

3) CallbackFromWebKit(int argc, char** argv)

You can write the code for the call back function which will be called after
‘Browser Window’ is triggered by Java Script code when using Web API. You
will be able to get the number of messages from ‘argc’ as integer and each
message from ‘argv’ as char* array via Web API sent from Java Script code
on your Webpage.

4) GetObjectNameTreeToAddAction

This function is called when the user adds a plug-in dll(or dylib) file into the
CLO S/W. You can manage the position where you want to put the plug-in
menu above or below which menu/action in the application. See “8. Plug-in
menu position” for details.

5) GetPositionIndexToAddAction

This function is also used when the user imports a plug-in dll(or dylib); you
can choose whether the plug-in action would be put into below the designated
menu/action which you wrote in 4) or above the target.

Then, build DLL(or dylib) and paste it to the installation folder as guided in “4. Quick
Start”.

※ Note. If you rename the plugin file and put the file on the designated folder, CLO

will run the plug-in just after completing the start-up of the application.

- Windows : “StartupPlugin.dll” into the executable folder,
- MacOS: “libStartupPlugin1.0.0.dylib” into the framework folder in the app package.

10

6. Plug-In Manager

1) You can set the position to add a plug-in action into the desirable menu in the
User Settings via User Settings -> Plug-in Tab.

2) If you click the ‘add’ icon, ‘File Open’ dialog will be shown to input the
plug-in dll path for Windows, the dylib path for Mac OS and then ‘Register
Plug-in’ dialog will appear; you can edit the feature title and menu position to
insert the plug-in feature.

11

3) New item will be added into the Preference Plug-In tab like below. You can
edit / delete the items.

※ In case you want to use the plug-in via the manager, please keep in mind

you should not use the default plug-in because it can cause malfunctioning of
CLO plug-in or the misconception of use.

12

7. Library Window Implementation

Library Window Interface are different from the export plug-in. When the user
clicks ‘API tab’ in the Finder in CLO, the application starts to call the virtual
functions in the Library Window API interface class. If you implemented a
class inherited from the Library Window API interface class, build it, and put
the dll into CLO’s executable folder as designated way; the module will run
the implemented function inside the plug-in dll.

1) Windows

a. Open the sample project

Browse <api_sdk_package> - ‘CLOAPIInterface’ -> ‘Samples’ ->

‘LibraryWindowImplementation‘ and open the solution file:

“LibraryWindowImplementation.sln”.

b. Write Code

You can write code as you want in LibraryImplePlugin class functions in .cpp

file but do not add or modify anything inside .h file.

c. Set Qt path

- Get the Qt library from

https://s3.amazonaws.com/Outside_Work/CLO_API/2_7/ExternLib.zip or

https://clo3d.oss-cn-shanghai.aliyuncs.com/web/CLO_API/2_7/ExternLib.zip

- Create a folder, “C:/Qt/4.8.7” and extract the ‘ExternLib/Qt/4.8.7’ into the

‘C:/Qt/4.8.7.

- Copy the ‘ExternLib’ folder into the api package folder as well.

- Add a ‘QTDIR’ into the System variables in Environmental Variables per
https://www.techjunkie.com/environment-variables-windows-10/

d. Deploy Sample Assets

- Get the sample assets for the Library Window Implementation from

https://s3.amazonaws.com/Outside_Work/CLO_API/2_7/sample_assets.zip or
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/CLO_API/2_7/sample_assets.zip

Extract the sample assets into ‘C:/sample_assets’

https://s3.amazonaws.com/Outside_Work/CLO_API/2_7/ExternLib.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/CLO_API/2_7/ExternLib.zip
https://www.techjunkie.com/environment-variables-windows-10/
https://s3.amazonaws.com/Outside_Work/CLO_API/2_7/sample_assets.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/CLO_API/2_7/sample_assets.zip

13

e. Build the project

Build a solution/project then the output dll file will be created in

LibraryWindowImplementation -> x64 ->Release folder named

CloLibraryAPI_Plugin.dll. Copy the output dll file into the CLO executable

folder. ‘API tab’ in Finder will act as you described in your code following the

Library Window Interface/Implementation specification.

Please see the LibraryWindowInterfaceI.h and LibraryWindowimplmentation

Plugin project code for details.

2) Mac OS

 This will break apple Code Signs and/or Apple Notarization

 This example assumes that the ID of the user logged in to mac is
“current_user”

a. How to install Qt SDK

i. Download Qt mac sdk.

mac Qt Library url :
https://s3.amazonaws.com/Outside_Work/CLO_API/Qt/4_8_7_for_MacOS.zip or

https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_1/4_8_7_for_MacOS.zip

ii. Extract the downloaded Qt.zip file to “/” (root)

iii. Register QTDIR in .bash_profile.

open ~/.bash_profile

export QTDIR=/Users/current_user/Qt/4.8.7

export PATH=$QTDIR/bin:$PATH

source ~/.bash_profile

b. How to implement Library Window Implementation

i. Extract the CLO_SDK.zip file.

ii. In the terminal, enter the following command to create

CloLibraryAPI_Plugin.xcodeproj.

python scripts/build_libraryapi.py xdebug

https://s3.amazonaws.com/Outside_Work/CLO_API/Qt/4_8_7_for_MacOS.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_1/4_8_7_for_MacOS.zip

14

iii. Open the generated xcodeproj file in Xcode.

iv. Edit the LibraryWindowImplPlugin.cpp file.

Always modify the next return value in the function to true.
The API tab is activated in the library window only if the return value of
this function is true.

bool LibraryWindowImplPlugin::EnableCustomUI()

{

 return true;

}

v. You can set the tab name in Library Window

bool LibraryWindowImplPlugin::GetTabName()

{

String str = “Sample”;

 return true;

}

vi. If you need to set the API tab as default and move to the first tab, set

the ‘IsDefaultTab()’ as true

bool LibraryWindowsImplPlugin::IsDefaultTab()
{
 return false;
}

15

vii. The currently implemented code is a sample code.

viii. Implement functions declared in LibraryWindowInterface.h to suit your

requirements.

ix. Release build.

python scripts/build_libraryapi.py release

x. The built dylib file will be created in the following location:

mac_release/CloLibraryAPI_Plugin/libCloLibraryAPI_Plugin.1.0.0.dy

lib

xi. Overwrite the generated libCloLibraryAPI_Plugin.1.0.0.dylib file into
the CLO package installed in /Applications:

/Applications/CLO_Network_OnlineAuth_Beta.app/Contents/Frame
works/libCloLibraryAPI_Plugin.1.0.0.dylib

16

xii. Get the sample assets for the Library Window Implementation from
https://s3.amazonaws.com/Outside_Work/CLO_API/2_7/sample_assets.zip or

https://clo3d.oss-cn-

shanghai.aliyuncs.com/web/CLO_API/2_7/sample_assets.zip

xiii. Extract the sample assets into ‘/Users/current_user/sample_assets’.

xiv. Set the sample assets folder described in the ‘APIDefine.h’ to
‘/Users/current_user/sample_assets’

xv. Now run CLO_Network_OnlineAuth.app.

Closet and API tabs will be created and shown on the left side of
Favorites in the Library window.

xvi. Click the API tab to navigate to the code you've implemented.

APIDefine.h

const QString SAMPLE_STORAGE_DIRECTORY =

QString(“/Users/current_user/sample_assets/”

https://s3.amazonaws.com/Outside_Work/CLO_API/2_7/sample_assets.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/CLO_API/2_7/sample_assets.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/CLO_API/2_7/sample_assets.zip

17

8. Plug-in Menu Position

1) “cloapi_plugins” folder

When CLO S/W starts to run, the plug-in module loads the dll(or dylib) files in
the ‘cloapi_plugins’ folder automatically.

a. In case GetObjectNameTreeToAddAction() function is implemented and the
default position for the plug-in menu is described inside the function properly,
an action will be added to above or below the menu/action position for the
plug-in action.

b. If GetObjectNameTreeToAddAction() is not implemented or contains
improper description, an action will be added to the child of Settings / plug-in
menu.

2) Edit

The user can modify the target position for the plug-in menu when or after
adding the plug-in via the Plug-in manager. See “6. Plug-in manager”.

a. Add plug-in via Plug-in manager
If the plug-in dll(or dylib) has the proper GetObjectNameTreeToAddAction()
function, the position will appear in the Register Plug-in dialog so that the
user can edit and/or confirm.

b. Edit the plug-in action position
The user can change the action position via the plug-in manager for the plug-
ins which were loaded automatically from ‘cloapi_plugins’ folder or were
added from plug-in manager by user

※ Caution

Please keep in mind that the user edits the plug-in position via step 2), it
would discard the default position described in the plug-in dll(or dylib) file. It
means that the priority of the user modification is higher than the plug-in
developers’; and the key value for the decision is the plug-in dll(or dylib) file
path – absolute file path.
As this can make users confused as illustrated below, please be careful.

i. A developer wrote the default position inside ‘plug_in.dll’
ii. A user saves the ‘plug_in.dll’ into the ‘cloapi_plugins’ folder or a

desirable folder, adds the plug-in and modifies the position
iii. The developer changes the default position inside ‘plug_in.dll’ and

distributes it to the user again.

18

iv. If the user puts the latest ‘plug_in.dll’ into the same directory he or she
used in ii) and overwrites it, the plug-in menu will be located in the
position the user set in ii).

9. Plug-in Debug Logs

Plug-in log will be made in (CLO_ASSET_FOLDER)/api_plugin_log.txt when
trying to run the plug-in action from the file menu.

1) CLO_ASSET_FOLDER

a. Windows

C:\Users\Public\Documents\CLO\Assets\

b. Mac CLO_ASSER_FOLDER

~/Documents/clo/Assets/

2) Debug logs

MESSAGE_PLUGIN_ACTION_MENU_CLICKED: "User clicked to run a plug-in action."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_REGISTERED_DLL_PATH: "Module
starts to look up the registered plug-in file path for the plug-in action."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_FIND_REGISTERED_DLL_PATH:
"Succeeded to look up the registered plug-in file path for the plug-in action."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_FIND_REGISTERED_DLL_PATH: "Failed to
look up the registered plug-in file path for the plug-in action."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_LOADED_PLUG_IN_DLL_FILE:
"Checking if the plug-in file has been loaded or not."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_FIND_LOADED_PLUG_IN_DLL_FILE: "The
plug-in has been loaded in the plug-in manager."

MESSAGE_PLUGIN_ACTION_TRYING_TO_LOAD_PLUG_IN_DLL_FILE: "Trying to load
the plug-in file."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_LOAD_PLUG_IN_DLL_FILE: "The plug-in
file is loaded into the plug-in manager successfully."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_PLUG_IN_DLL_FILE: "Failed to load
the plug-in file."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_PLUG_IN_DLL_FILE_AND_ABORT:
"Failed to load the plug-in file. Aborted."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_DO_FUNCTION: "Trying to find
DoFunction inside the plug-in file."

19

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_LOAD_DO_FUNCTION: "Succeeded."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_DO_FUNCTION: "Failed."

MESSAGE_PLUGIN_ACTION_TRYING_TO_EXECUTE_DO_FUNCTION: "Trying to run the
DoFunction inside the plug-in file."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_EXECUTE_DO_FUNCTION = "Succeeded."

MESSAGE_PLUGIN_ACTION_EXEPCTION_TO_EXECUTE_DO_FUNCTION =
"Exception."

